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Weakly Pulse-Coupled Oscillators, FM Interactions,
Synchronization, and Oscillatory
Associative Memory

Eugene M. Izhikevich

Abstract—We study pulse-coupled neural networks that satisfy quence, all results obtained by studying pulse-coupled neural
only two assumptions: each isolated neuron fires periodically, and networks might be irrelevant to the brain. However, it has been
the neurons are weakly connected. Each such network can be proven recently [14], [19] that many biophysically detailed and

transformed by a piece-wise continuous change of variables into biologically ol ible Hodakin—Huxlev-t | network
a phase model, whose synchronization behavior and oscillatory lologically plausible Hodgxin—Huxiey-type neural networks

associative properties are easier to analyze and understand. Usingcan be transformed into pulse-coupled form by a piece-wise
the phase model, we can predict whether a given pulse-coupled continuous change of variables. Thus, the difference between

network has oscillatory associative memory, or what minimal pulse-coupled neural networks and the Hodgkin—Huxley-type
adjustments should be made so that it can acquire memory. qqe|s js just a matter of coordinate change. Therefore, it is

In the search for such minimal adjustments we obtain a large . . . h .
class of simple pulse-coupled neural networks that can memorize imperative that we understand the information processing that

and reproduce synchronized temporal patterns the same way a takes place in pulse-coupled neural networks.
Hopfield network does with static patterns. The learning occurs
via modification of synaptic weights and/or synaptic transmission B. Review of Methods
delays. . .
) . There are many approaches toward understanding behavior
Index Terms—Canonical models, Class 1 neural excitability,

: : S i : ¥» of pulse-coupled neural networks:

integrate-and-fire neurons, multiplexing, syn-fire chain, transmis- ) . o L .

sion delay. « Spike Density DistributiarMethods of statistical physics,

such as Fokker—Planck equation and mean-field approx-

imations, have proven to be useful in analysis of spike

density distributions of fully connected pulse-coupled
N THIS turorial paper we exploit the relationship between  oscillatory networks when the size of the netwark> oo
pulse-coupled neural networks and phase models [3], [20], and the strength of connectiors= 1/n — 0; see [1],

[34]. Since synchronization behavior and some oscillatory [20], and [33].

associative properties of phase models are understood (see Spike Response Modeldany weakly pulse-coupled net-

[14] for a review), the relationship provides a powerful tool  works can be written in the “spike response” form,

for analysis of pulse-coupled networks. which is a system of nonlinear integral equations having
Since we do not assume that the reader is familiar with phase “synaptic kernels” (see review by W. Gerstner [9]).

models, we devote a large portion of the paper (Sections Ve Firing Maps Analysis of strongly pulse-coupled net-

and VI) to an elementary introduction into some essential works can be reduced to an analysis of a firing mapping.

I. INTRODUCTION

aspects of the phase model theory. The theory is based on the Poingareturn maps, and
was first introduced by Mirollo and Strogatz [28]; see
A. Pulse-Coupled Neural Networks also [8], [25], and [29].

Phase ModetsWeakly pulse-coupled networks of oscil-
latory neurons can be transformed into simpler phase
models [3], [20], [34]. This is the approach we use in
the present paper.

Some treat pulse-coupled networks as the third generation.
of neural-network models that take into account the spiking
nature of neurons, and hence, are much closer to biology than
classical artificial neural network models (see, e.g., [22] and i )
[23] for a review). Many other scientists, especially those whq Of €OUrse, a straightforward analysis [3], [12] and computer
study Hodgkin—Huxley neurons, treat pulse-coupled neur%”nula_tmns can also provide an invaluable information about
networks as toy models; that is, even though the netwonghaV'or of pulse-coupled networks.
are based on abstractions of important properties of biological _
neurons, they are still far away from the reality (despite tHe- Weak Connections
fact that we have no idea what the reality is). As a conse-Most of the methods mentioned above work only when

connections between neurons are weak. Remarkably, this
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the amplitude of an action potential (around 100 mV) and tlfe Synchronization
amplitude of the mean EPSP necessary to discharge a quiesceg&udying synchronization and other locking behavior in

cell (around 20 mv); see [14, Sec. 1.3]. pulse-coupled networks can be a daunting task. In Section IV
For example, PSP's in hippocampal granule cells areé @3 show that it is a relatively simple task when we consider

small as 0.1 0.03 mV [26]. Firing of a hippocampal CA3 e models. Our major tool is the Ermentrout theorem [6],

pyramidal cell elicits EPSP in other CA3 pyramidal cellgynich provides sufficient conditions for stability of synchro-

ranging from 0.6 to 1.3 mV [27]. Firing of the same CA3},i764 solutions. In Section VIl we use the classical integrate-
cell can evoke EPSP in CAL pyramidal cells (via Schaffefq fire model to illustrate how the theorem works. Our

collateral) of amplitude 0.13 mV [31]. The majority of PSP'S,navtical results are corroborated by computer simulations
in pyramidal neurons of the rat visual cortex are less thapg fingings of other scientists who used alternative methods
0.5 mV in amplitude, with the range 0.05-2.08 mV [24]iscyssed in Section I-B above. In particular, we confirm a
As Mason and coauthors [24] point out in their discussiqge|_known fact that neither excitation, inhibition, nor synaptic

section, there is an underestimate of the true range becayigsmission delay alone contributes to synchronization, but
PSP’s smaller than 0.03 mV would have gone undetected. i,qi, interplay does.

D. Phase Model G. Oscillatory Associative Memory

If the pulse-coupled neurons are weakly connected anda sufficient condition for the existence of oscillatory as-
each neuron exhibits autonomous oscillatory behavior, then ¥stiative memory in phase models is well known. It follows
entire network can be transformed into a simpler phase mog@eJm the Theorem 9.15 by Hoppensteadt and Izhikevich [14],
by a piece-wise continuous change of variables. A preciggich we present in Section VI. There we extend the theorem
statement is given by Theorem 1 whose proof can be foundfit pulse-coupled neurons. Thus, we obtain a simple criterion
the Appendix. A generalization of the theorem that takes intg determine whether a given pulse-coupled network has the
account nontrivial temporal dynamics of synaptic transmissi@gsociative memory. It turns out that the leaky integrate-and-
is straightforward [34] and can also be found in Appendix lkire model does not satisfy the criterion. In attempt to make

Each (phase) variable in the phase model has the meaningninimal adjustment, we discover a large class of simple
of timing of firing of the corresponding neuron, and the phasgilse-coupled networks that are guaranteed to have oscillatory
model captures how timing of one neuron affects that efssociative memory: They can memorize and reproduce non-
the other one on a long time scale. The phase model is m@yial temporal patterns in the same way the standard Hopfield
pulse-coupled, which simplifies its analysis significantly. Stilhetwork does with static patterns.
studying the phase model provides an invaluable information

about pulse-coupled networks because the difference betwgen earning Through Modification of Transmission Delays

the former and the latter is just a matter of coordinate change, . .
Connections between pulse-coupled neurons are determined

by two sets of parameters: the strengths and the delays. It
is commonly assumed that learning consists in modifying

If the weakly pulse-coupled network consists of neuroribe strength of connections, while the delays are either kept
having nonresonant frequencies, then the corresponding phemastant or neglected. In Section VII we present a (complex-
model is uncoupled. Thus, the long-term interactions betweeanjugate Hebbian) learning rule that changes the delays
nonresonant neurons can be “removed” by a piece-wise céd-memorize temporal patterns. The learning rule was de-
tinuous change of variables. This mathematical result can feed originally for weakly connected oscillators near multiple
explained in ordinary language as follows: Since the neuroAsidronov—Hopf bifurcation [16], and it seems to work for
are weakly connected, any change in timing of firing of ongulse-coupled oscillatory networks too.
cell induces small changes in timing of another cell. Such
small changes can accumulate and become significant on a Il. THE PHASE MODEL
time scale of many periods, or they can cancel each other and
remain small. When the neurons have nonresonant frequenci@sGeneral Pulse-Coupled Neural Networks
the changesanceleach other. In contrast, when the neurons Many pulse-coupled networks can be written in the follow-
have resonant or nearly equal frequencies, the small chan%egs form:
accumulate and become significant. '

We see that whether or not two neurons interact depends . . .
not only on the existence of synaptic connections bet?/veen @i = fil#) +Ezg“(xi)6(t =t~ ij)- (1)
them, but also on the relation between their frequencies. The =t
interaction is most effective when the frequencies are neaHere z; € [0, 1] denotes the rescaled membrane potential of
equal. We refer to such interactions as being frequency madbe <th neuron. The functiory; describes its dynamics. When
ulated (FM) and discuss them in detail in Section Ill, whick; reaches 1, théth neuron is said téire a spike andz; is reset
is aimed to the readers having no mathematical backgroumalthe new valuer; = 0. This moment is marked a$. The
There we discuss how FM interactions can provide a powerfdimensionless parameteidenotes the strength of connections
mechanism for multiplexing of neural signals. in the network. The functiog,; describes the effect of firing

E. FM Interactions
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of the jth neuron onto théth one: If z; fires, variablex; is D. The Phase Model Theorem

incremented byeg;;(z;) after some time delay,; > 0. The | o X,(t) be the solution of theth equation in the uncou-

increment is produced by the Dirac delta functti)ea_tlsfylng pled system (3) starting from¥;(0) = 0; that is,

§(t) = 0 for all ¢ # 0, 6(0) = oo, and [ & = 1. Neither f; ‘

nor g;; are assumed to be continuous. A possible ambiguity of X; = fi(Xy), X;(0)=0. 4

the pulse-coupled network of the form (1) when two or more

neurons fire simultaneously is discussed in Appendix I-A. Obviously, X;(t) is T;-periodic, and its firing occurs at the
A typical example of a pulse-coupled neural network is thémes 13, 21;, 315, ---. Weak input from the other neurons

leaky integrate-and-fire model, which can be written in th@ay delay or advance each firing thereby introducingsan
form (1) for phase deviation (phase shift). Such deviations may accumulate

with each cycle and become significant on the time scale of
filzi) = a; — bz; and  gij(zi) = sy (2) order1/e. To take them into account, we introduce a slow
hase deviation variable; € S*. Here$! is the unit circle,
wheres;; € IR are some (synaptic) coefficients. A nontrivialyhich can be thought of as the intenjal 2x] having points
¢;; arises when the absolute refractory period is taken iMj@ro and2x identified (glued).
account; that is, the period immediately after the firing during Theorem 1—Phase Model For Weakly Pulse-Coupled Oscil-
which the neuron is not sensitive to any input. bgt; <1 |ators: Consider the pulse-coupled system of the form (1) and
be the length of the refractory period, then suppose that each > 0; that is, each neuron fires repeatedly.
Suppose that each synaptic transmission dgjais a constant
Gij(x;) = { that is independent from the strength of connection§hen,
there is arey > 0 such that for alk < ¢ there is a piece-wise
continuous change of variables of the form

0, if z; €[0, Zyer),
Sij, if z; € [.Tref, 1)

B. Weakly Connected Neural Networks

In this paper we assume that < 1, which implies zi(t) = Xi(t + Q; tpi(et)) + O(e) (5)
that connections between neurons are weak. This assump- )
tion follows from in vitro observation that amplitudes oftnat transforms (1) into the phase model

postsynaptic potentials (PSP’s) are around 0.1 mV, which is n
small in comparison with the amplitude of an action potential @i = w; + ZH”'(‘P“ @)+ 0(e) (6)
(around 100 mV) and the amplitude of the mean EPSP j=1

necessary to discharge a quiescent cell (around 20 mV); see , L .
detailed discussion by Hoppensteadt and Izhikevich [14, séce® = d/dr andr = et is the slow time. Each parameter
1.3] who obtained an estimai®004 < ¢ < 0.008 for a L
model of hippocampal granule cells usiiigvitro data from Wi = Zhij
j=1

hippocampus [26].
We remark that we do not need infinitesimalfor our  accounts for frequency changes that are due to network con-

manipulations below. For example, the phase model theoretions [constantﬁ?j are defined below in (9)]. Each con-

“1" is expressed in the form: There is ap > 0 such that for pecign functionH,; has zero mean value and can be written
all e < e ---. Most of the illustrations found in this paper ar§, gne of the following forms:

simulations of integrate-and-fire networks foe= 1/20. - Equal Frequenciesif ; = £2;, then

iodic Spiki 1
C. Periodic Spiking Hii(gi, 0;) = %hij(”(/)ij +oi—@i)—hy (@)

where;; = Q;n;, is the rescaled time delay

o 9 (Xi(Q716))

We are interested in the case when each neuron

in th.e pulse-coupled network (1) can fire repeatedly without hij(0) = Qi Fi(X(710)) (8)
any input from the other neurons. This happens wfién;) > _ _ ’
0 for all z; € [0, 1]. [Indeed, if f;(zq) = 0 for some is a function, and
zo € [0, 1], thenz; stops atz; = z0.] One can easily find 1 27
k 0 _ iy

the period hi; = @) /0 hi;(6)dé 9)

1

- [ is a constant.

o filz) » Resonant Frequencie¥ p$}; = ¢2; for some relatively

and the frequency prime integery and g, then
g 2 Hij(wi ) = Qij(pei — a;)
Y

for some2r-periodic function;; that vanishes when the
of such periodic spiking. order of resonancdp + ¢|, increases.
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1
Phase Reserting
(Slirnulus
0 X, i3 R
0
x2
Fig. 1. An illustration of the relation (5) between the actual solution, ! n )
x(t), of the pulse-coupled system (1) and its reconstruction using the Equal Frequencies
phase model (6). Simulations of the leaky integrate-and-fire neurons,
a; =1, b, = 0.9, ¢ = 0.02; see Section V. g‘l'{u.s'elRe.\'ctting
Ly
xy LR
« Nonresonant Frequencietf pS2; # €2, for all nonzero [T T EEEEREREEEDRRRERERRRRRR
 FHHHHHHEH
Hij(pis 05) =0 Non-Resonant Frequencies
for all ¢; and ;. Fig. 2. An illustration of FM interactions between two neurons: Whether

The proof of the theorem involves averaging theory and ?5 not two interconnected neurons interact depends on the ratio of their
requencies. Continuous bars denote the spiking activity of two neurons.

given in Appendix |. A generalization of the theorem for th@yaspeq vertical bars denote firing when a brief perturbation is apifigaal
case of nontrivial temporal synaptic transmission is discusseequenciesAny changes in phase (timing) of firing of one neuron affect the
in Appendix 1. phase (timing) of the other on&lonresonant Frequenciegs neuron is not

In thi id K | led il sensitive to changes in phase of the other neuron even though the neurons are
n this paper we consider weakly pulse-coupled osci at05§nnected. (Simulations of two leaky integrate-and-fire neurons. Parameters:

having equal frequencies and possibly delayed interactionszla 0.05, ¢ € [0, 30], b, = 0.5, ¢;; =1, @ = 1, az = 1, oras = 1.15.)
this case functior;; is given by (7). Obviously, it depends
on the phase differencg; — ¢;, so that we can rewrite the

. / . dynamically turn on or off its communication with another
phase model (6) in the following “classical” form y y

neuron simply by changing the frequency of spiking, without
- changing the strength of synaptic connectigt)
i = wi + Z Hij(pj = ¢i)- (10)  \we illustrate this issue in Fig. 2 using two cofLstIed integrate-
i=t and-fire neurons. When they have equal frequencies, they lock
Since we neglect the small order texfi{¢), the relation (5) (see continuous vertical bars in the upper part of the figure).
illustrated in Fig. 1 is valid only on the fast time scate,of If a brief strong stimulus is applied te; so that its phase is
order 1/e. The relation may hold on the infinite time scaleshifted (dashed bars), the other neuron tracks the change by
if additional conditions are imposed, e.g., that (10) exhibitscquiring a phase shift (compare continuous and dashed bars
frequency locking. for z3). Since the neurons are weakly connected=(1/20),
the interaction between them is not instantaneous; i.e., it takes
[Il. FM I NTERACTIONS AND THE NATURE OF NEURAL CODE  a few spikes, but the neurods communicateia their phases.

We see that the pulse-coupled neural network (1) cdp, contrast, vyhen they h_qve nonresonant frequencies, one of
be transformed into the phase model (6) by the changetBF neurons is not sensitive to phase of .the other one. Such
variables of the form (5). Synaptic connections from jile Neuronsdo not interact at least on the time scale df/e
neuron to theith one affect the value of the parametey Periods. _ o
and the form of the functioH,;. The former determines the In Fig. 3 we consider another, less trivial example. We
“averaged” effect of the connection that is due to increas@edel each column by three strongly connected leaky
excitation (or inhibition) converging to théth neuron. The integrate-and-fire neurons so thaf fires wheneverz;, or
latter determines how the phase (timing of firing) of onaiz do. Thus, the spike train of;; is a superposition of the
neuron affects that of the other one. We say that two neurc#ke trains ofz;; and ;. The latter fire periodically with
interact when one of them can distinguish timing of anothethe frequenciesy;; and w;», respectively, wheré = 1 or
one. 2 is the column number. We also assume that = wo;

The form of H;; depends on the relation between th@nd wi> = wao. Notice that both neurons»; and z»» in
frequencies?; and ©2;. A seemingly counterintuitive fact is the second column receive an identical (quasiperiodic) spike
that H;; = 0 when the frequencies are nonresonant. It impliggain from the first column viar;3(¢). From Theorem 1 it
that whether or not the neurons interact depends not ofidflows thatzs; can distinguish the part of the signal coming
on the existence of synaptic connections between them, Inam z;; from the part coming frome;2, becausers; and
also on the relation between their frequencies. A neuron can have the same frequencies. To verify this we perturb



512 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999

Frequencies
wﬂ = 21

W= Wy

Phuse Resetting

Stimulus \‘

x N O N N N O ] Y O Y O Y I IO I (N Iy 7 727
G T O O O O B I BIE EIR R R B2
Xy No Significant

Phase Shift

Fig. 3. Multiplexing of neural signals. Interaction between identical neurons and x»; does not interfere with the interaction between the neurons
x12 and xz22 having different frequency even though all neurons use a single transmission;inéNhen we change the phase of, by applying a
phase resetting stimulus, the corresponding neutgnacquires a phase shift, but, does not (compare continuous and dashed b&ajameters Each
column consists of strongly connected leaky integrate-and-fire neurons (2pwitk: 1, a11 = a1 = 2, a1 = a2 = 2.3, andaiz = a3 = 0.
Connections between the columas= 1/20 and timet € [0, 20] (from [18]).

the phase of the first neuron without changing the phapeesent counter-examples showing that FM interactions might
of the second one. The old (new) activity is depicted amt take place.) This result was extended later [18] to include
continuous (dashed) bars in Fig. 3. From the figure we cascillators having multifrequency autonomous rhythmic activ-
see thatx,; acquires a phase shift while,, does not. If ity. In both cases each oscillator may describe dynamics of
we changed the phase af,, then zs; would not acquire an excitable dendritic spine, a single cell, a cortical column,
a phase shift butco; would. Thus, the pairs of neuronsor entire brain structure, and consist of enormous number of
w11, T21 and xys, T2 0Scillating with different frequencies variables and parameters taking into account all known (or
can communicate selectively using different channels butséll unknown) biophysical information. As soon as the two
single transmission line. This is probably the simplest exampesumptions are satisfied, the interactions become FM.
of multiplexing of neural signals. The universality of FM interactions may shed some light
We see that the frequency of a periodically spiking neuran why the brain exhibits rhythmic activity, and why there
controls its communication with other neurons. We refare so many frequencies. We hypothesize [13] tieatrons or
to such communication as being frequency modulated (Fddrtical columns need rhythmic activity to communicate selec-
interaction). In analogy with FM radio, we may say tlhé tively. That is, they communicate only with those oscillators
frequency (mean firing rate) of a periodically spiking neurothat have appropriate frequencies. They do not communicate
does not carry any information other than identifying a channelith the other oscillators even though there might be synaptic
of communication. Information (i.e., neural code) is carriedonnections between them. Thus, various ensembles of oscil-
through modulations of interspike intervalahich are phase lators can process information without any cross-interference.
deviationsy;. They are also referred to as being frequenc&n oscillator (a neuron or a cortical column) may participate
modulations in electrical engineering literature. in different ensembles simply by changing its frequency.
Surprisingly, the result is much more general, and its FM interactions might prove to be useful in design of
applicability goes far beyond pulse-coupled neural networkseurocomputers, since they can avoid th&connectivity
Hoppensteadt and Izhikevich [14, ch. 9] have proven this fproblem. Indeed, a conventional neurocomputer hawving
all neural systems satisfying only two assumptions: 1) eackurons must have at leasfn — 1)/2 connections [Fig. 4(a)],
unit is an autonomous oscillator and 2) the connections asbiich makes building such a computer for lavgénpractical.
weak. (If any of these assumptions is violated, then we c&low suppose that each neuron is a high-frequency oscillator



IZHIKEVICH: WEAKLY PULSE-COUPLED OSCILLATORS 513

In-phase
Synchronization

Anti-phase [ I S O A S R B

Synchronization +—++++++++

Out-of-phase M A A e
Synchronization ++—+—++++++

Fig. 5. Examples of various synchronization regimes.

in-phase (anti-phasg¢. When yx;; differs from zero andr,
the synchronization is said to beut-of-phasg see Fig. 5
and [14, ch. 9] for more details. If every pair of neurons
is synchronized, then so is the entire network. Obviously, it
suffices to check thap; is synchronized withps, - - -, @,.

In terms of the voltages:;, the synchronization implies
thatx; and; fire simultaneously. It does not imply, though,
that z;(t) =~ z;(¢) for all ¢, unlessf;(z) =~ f;(x) for all z.
This makes studying synchronization in (10) much easier than
studying it in (1).

To find a synchronized solution in (10) one should find

constantsv* and ¢, - - -, ¢, such that
(b) .

Fig. 4. (a) A conventional neurocomputer havingneurons (shaded cir- w (At .

cles) would have at least(n — 1)/2 connections and (b) an oscillatory Wi =wit ZH” (X”)’ for all < (11)

neurocomputer can have ontyconnections: from each neuron to a common J=1

media (black circle). The neurons can communicate selectively by changingi_l N N N . .

the frequency£2;, of oscillation. where x;; = ¢} — ;. Then the synchronized solution has
the form

and the neurons communicate through a common medium 0i(T) =W T+ " +¢F, i=1-,n (12)

[Fig. 4(b)] so that there are only connections. Then any two

neurons can change dynamically the connection between th&here¢” is an arbitrary phase shift.
by changing their frequencies. In particular, they can turn thel€t

connections on and off. What we have proven here and in [13] ) dH;;(x5)
and [14] is that this mechanism would work regardless of the Hi;(x;) = —
technical details of how the neurons are connected, what their

design is, etc. A potential problem is that whenever a neurggnote the derivative off;; at x = xj;.

changes its frequency, it alters its connections with many otherTheorem 2—Ermentrout 1992The synchronized solution
neurons too. It is not clear yet how to cope with this effedd2) is orbitally stable if all

or to take advantage of it. In any case, programming such an ;.

oscillatory neurocomputer would require new concepts going J A

dx

beyond the Hopfield network paradigm. and the matrixA = (A;;) is irreducible; that is, the graph
defined by A is complete.
IV. SYNCHRONIZATION: GENERAL THEORY For example, when we consider a network of identical

Since weakly pulse-coupled oscillators can be dynamicafgcillators

partitioned into independent ensembles, it suffices to study in- ) n
formation processing taking place within each such ensemble. @; =wo t Z Ho(p; — ¢i)
Without loss of generality we assume that the entire network is J=1

a single ensemble; that is, we consider neurons having eyl the in-phase synchronized solution always exists, and it
frequencies. Due to the phase model theorem, it suffices;{ogi-1je whenH/(0) > 0.

consider the phase model (10). _ A generalization of the Ermentrout theorem for the case
Theith andjth neurons are said to ®ynchronizedvhen \ han the functions;; are discontinuous at}; is discussed
in Section IV-B below.
The Ermentrout theorem provides only the sufficient condi-
where x;; is some constant, and = et is the slow time. tion for synchronization. Thus, synchronized regimes in (10)
If xi; = 0 (xj; = =), then synchronization is said to bemay be possible in other circumstances.

@i (1) = @ilT) = X3
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H max b Hij b Hl]
0 2 :
}min \j b iY v
: X X
(@ L a

Fig. 7. A discontinuous function can be approximated by a continuous one,

\_/\ /\ so thatH;; () can assume any value betweerand b.

but instead of looking at the sign of derivative-ato check
the stability, we require that < .
() Our motivation for this procedure is simple: We treat
discontinuous functions as continuous ones in a singular limit;
see right-hand side of Fig. 7. The inequality< b ensures
N\ /\ that the derivative at is positive.
X Discontinuous functiongl;; arise frequently in applications
Ok DR A because the conditiong(0) = f;(1) andg;;(0) = ¢;;(1) do
not have to be satisfied in the pulse-coupled networks (1) even
(c) when f; andg;; are continuous. The resulting discontinuity of
Fig. 6. Equilibria of (13) for variousv. H;;(x) atx = 0is a mathematical consequence of the fact that
pulse-coupled neural networks of the form (1) are ambiguous
when two or more neurons fire simultaneously (see discussion
in Appendix I-A). Surprisingly, the discontinuity leads to the
It is usually difficult to find a solution to (11) whenm > 2. following simple criterion for checking stability of in-phase
The caser = 2 does not pose any problem, and can easily Rgnchronized solutions.

analyzed. Lety = 2 — ¢1 be the phase difference between Theorem 3—Stability of In-Phase Synchronized Solutions:

A. Example: Two Neurons

two coupled neurons. Then Consider pulse-coupled oscillators (1) having continuous func-
r_ H sl 13) tions fi(z) andg;;(x) atz = 0 andz = 1 and no transmission
X =+ HO, X € (13) delays. If the in-phase synchronized solution exists, and
here
" 95(0) _ gis(1) 14)
W = Wy — W1 and H(X) = Hgl(—)() — ng()(). fZ(O) fz(].)

Some examples off are depicted in Fig. 9. Stable equilibriafor all  andj, then the solution is stable.

of (13) correspond to synchronized solutions of the phaseSince in-phase synchronized solutions (as well as antiphase
model. Geometrically, the equilibria are the intersections &Plutions) always exist when the neurons are identical, one
the graph ofH and the horizontal line-w, as we illustrate need only to check the condition (14) in this case. For example,
in Fig. 6. They are stable if the slope of the graph at tHge condition is satisfied for integrate-and-fire neurons, which
intersection is negative. (Do not mix this condition with thémplies that they synchronize in-phase.

requirement of the Ermentrout theorem that derivative& gf Proof: We abuse notation below and uge= 0 whenever

are positive:H and H,; are different, in some sense opposits¢ — 0+ 0 andx = 27 whenevery — 27 — 0. From (8)
functions.) When the parameter passes either- min H or and (14) it follows thath;;(27) > h;;(0). Since there are no
—max H, the synchronized solutions disappears via saddfgansmission delays, ai;; = 0, and from (7) it follows that

node bifurcation on a limit cycle [see Fig. 6(c)], and the new 1 o
behavior is calledlrifting: The activity is either quasiperiodic Hij(x) = %hz‘j(—x) = hij
or high order locked; see Chapter 9 by Hoppensteadt agrqd, hencea = Hy;(2r) < Hij(0) = b. .

Izhikevich [14] for detailed explanations. ' AT g .
Discontinuities in the connection functiod$;; may result

in the following phenomena:

] . e super-convergence to synchronized solution;
System (11) is usually easy to solve when functiéhg are « perfect synchrony;

discontinuous. Let be a point of discontinuity off;;; that is « persistence to heterogeneity.

B. DiscontinuousH;;

a= lim H;(x)# lim Hj;(x)=10b The easiest way to see this is to consider a pair of oscillators
x—7=0 X=7+0 and assume that the functiof in (13) has a discontinuity
see left-hand side of Fig. 7. Whenevgf;, = v in (11), we at~y and —w is betweena and b, as we depict in Fig. 8.
allow H;;(~y) to assume any value betweermandb so that the If x(0) is in some neighborhood of, then it takes a finite
system is solved. The Ermentrout theorem can still be appliednount of time to converge to it (i.e., super-convergence).
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Simple calculations show that

x'=H(%)
T, =1/a; (Period)
¢ — Q; =2wa; (Frequency)
0 Xi(t)=a;t  (The Solution)
- Hij(x)=0 [see (10)]
| H(x)=0 [see (13)

see the top part of Fig. 9. Sindé;; = 0, we see that such a
Fig. 8. Discontinuities in function&; ; or H may lead to super-convergencepulse-coupled network behaves as if it were uncoupled on the
to perfect synchrony and persistence to heterogeneity (see details in the teithe scale of ordet /¢; that is, the distance between successive

firings of thesth and thejth neurons does not change with

After the convergence the solutior{~) = ~ for all + (perfect time; see iIIust.ration i_n Fig. 10. Behavior of such a ne_ural
synchrony). Moreover, stays aty even when we vary network is not |nt§:restlng even wheq we introduce inhibitory
the parameters (i.e., persistence to heterogeneity). Thes®yNapses or explicit synaptic transmission delays.
properties of weakly pulse-coupled oscillators resemble those )
of relaxation oscillators [32]. B. Leaky Integrate-and-Fire

A nasty drawback of discontinuous functions is that the A network of leaky integrate-and-fire neurons is described
solution may not be unique. Let us illustrate this issue usiny the system
system (11). Suppose eadH;;(x) has a discontinuity at "
x = 0 (which is the case for integrate-and-fire neurons; see &= a; — bx; +629u5(t — )
Section V). Since eacl,;;(0) assumes many values, then so =
does the parameter* in the system ) )
where we require that; > b; > 0 so that each neuron is an
autonomous oscillator. Peskin [30], Mirollo and Strogatz [28],
Kuramoto [20], and many others have studied synchronization
phenomena in such a network.

1) Excitatory ConnectionsSuppose allg;; = 1. It is a

. : . . simple exercise to check that
which corresponds to in-phase synchronized solutions having P

for all 4

different frequencies. Whatever frequency is observed in actual 1 m(1— bi
simulations of (1) depends on the algorithm used when two or ! b; a;
more neurons fire simultaneously; see the Appendix I-A, for 27b;
discussion of this issue. i b;
In <1 - —)
a;
Xi(t) =2 (1= et
V. SYNCHRONIZATION: EXAMPLES g b;
Let us apply the theory described above to a number of 2, b; 0:/2m Q24
well-known pulse-coupled networks. i(x) = oma; 1= a; " 2rai(a; — b;)
02 b —6;/27 b 6;/2m
; Hx)=—<[1-- —(1-= )
A. Integrate-and-Fire () QM{ < a) < a)

Integrate-and-fire neurons provide one of the simplest ex- ) ] ] o
ample of pulse-coupled networks [30]. Let € [0, 1] denote See Fig. 9 for illustrations. Notice that ea&h; () is discon-
the rescaled membrane potential of ftfeneuron. A nonleaky tinuous atx = 0, and
integrate-and-fire neuron is governed by the equation lim Hi(x)< lim Hi;(x)

x—27—0 x—0+0
This results in super-convergence to the in-phase synchronized
solution, which we illustrate in Fig. 11. Moreover, the solution
i he threshold value — 1 (th persists under small heterogeneity of the frequencies; see
until z; crosses the threshold valug = 1 (the parametet;  gecion v-B. Mirollo and Strogatz [28] and Kuramoto [20]

must be positive to ensure that). At this moment, which Wshtained the same result using different methods

denote by}, it pulls membrane potentials of the other neurons Analysis of the shape of the functior;; can say more

X . L. g
by a fixed amount possibly bringing them to the thresholdy ., + hehavior of the integrate-and-fire neurons. For example,
too. Such system can be written in the form (1) where o tact that the derivative df;; is negative implies that even

if a completely out-of-phase synchronized solution existed, it
would be unstable. (Indeed, it follows from the Ermentrout

j:i:ai
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a g
; ij ‘Hij ’H
0 0
0 0 ‘0 2n ‘0 X 2
0 0 X 1 X
Integrate-and-Fire
a g.
0 0
a-b 0 {0 T~ Vx 2n
0 0 X 1 X
Leaky Integrate-and-Fire
a 8;; H ‘ H -~
i 1 —_l 0 ij 0 /
a-b '0 Coe—— 2% |O /X 2n
0 X —_ '~

Leaky Integrate-and-Fire with Absolute Refractory Period

Fig. 9. Various functions for integrate-and-fire neurons.

A
HHHHAH R
HHHHHHH

=

-+

Fig. 10. Simulation of» = 7 nonleaky integrate-and-fire neurons.

The network behaves as if the neurons were uncoupled. (Parameteig: 12. Explicit synaptic transmission delay (e.g., 1/3 of a period) induces

a; =1,b; =0,¢ =1/20, ¢ € [0, 30].) a phase shiftZr/3) in the connection functiorH;; corresponding to the
leaky integrate-and-fire neuron.

}
1
1
T
1
T

Fig. 11. Super-convergence to the in-phase synchronized solution in a net-

work of n = 7 integrate-and-fire neurons having instantaneous excitatory o . . .
connections. (Parameters; = 1, b; = 1/2, ¢ = 1/20, t € [0, 30].) Fig. 13. Desynchronization of the integrate-and-fire network with an ex-
plicit transmission delay. In-phase synchronization is not a stable solution.

theorem that any such solution would be stabletfes —oo.) (Parameterse =8, a; =1, b; =1/2.9=1/3,c=1/20.t € [0, 30])

Thus, a stable splay (merry-go-around) state cannot eX'Stir'{—]phase synchronized solution continues to exist but becomes

such a network. . , :
Now suppose there is an explicit time delgy;, which unstable. Sincef; (x) > 0 for aI_I X # 0. any antiphase or
induces a phase shift in connection functidfig, as we depict out-of-phase synchronized solution, if exists, becomes stable.
in Fig. 12. From the Ermentrout theorem it follows that thé NS confirms the result of Nishuret al. [29].
in-phase synchronized solution becomes unstable in this cask€t Us introduce a small synaptic transmission delay. Then
since eachH,(0) < 0. But many other stable solutions ma);eachHij acquires a phas_e shift and !ook quahtaﬂvgly S|.m|lar
appear (see illustration in Fig. 13) including the asynchronotfs the one depicted in Fig. 14(b). Sindg;(0) > 0 in this
states [1]. This is in agreement with the results obtained §@se. the in-phase synchronized solution, if exists, becomes
Coombes and Lord [3]. stable (see Fig. 15), but there is no super-convergence, perfect
2) Inhibitory Connections:Suppose the synaptic connecsynchrony, and persistence to heterogeneity. Since in-phase
tions are inhibitory; that is, all;; < 0. Each connection solution always exists in the case of two identical neurons,
function H;; looks like the one depicted in Fig. 14(a). Theve confirm the result of Van Vreeswijk and coauthors [34]
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‘ Hij/ 8 H.
0 0 21 1 /\IJ
X 0 0 2n
@ Fig. 16. Pulse-coupled canonical model (15) for Class 1 neural excitability.
0 X model, yet as biologically plausible as Hodgkin—Huxley-type
0 2n models?” Remarkably,there are More precisely, there are
pulse-coupled canonical models that possess the following
universal property: many biophysically detailed and biolog-

(b) ically plausible Hodgkin—Huxley-type neural networks can
Fig. 14. (a) FunctionH;; for integrate-and-fire neurons with inhibitory be _tranSfO_rmed |n_to the pulse-coupled.canonlcal models by
synapses and (b) the same function is phase-shifteday$3 due to the @ piece-wise continuous change of variables [19]. Thus, the
synaptic transmission delay that takes a third of a cycle. only difference between the pulse-coupled canonical models
o and the biophysically detailed neural models is just a matter of
S S Y S N S coordinate change. The only major requirement is that the bio-

} physically detailed models exhibit Class 1 neural excitability

[11]; that is, they can fire with an arbitrary low frequency. As a

result, the question of biological plausibility of such canonical

models is replaced by the question of biological plausibility of
Fig. 15. Convergence to the in-phase synchronized solution in the inhibitdslass 1 neural excitability. This is the essence of the canonical

integrate-and-fire network with explicit transmission delays. (Parametergiodel approach developed in the book by Hoppensteadt and
a; =1,b;, =1/2,n =1/3,e = 1/20, ¢t € [0, 30].) Izhikevich [14]

that inhibition, not excitation, may synchronize neural firin oazr“ﬁ“c[)&]o fasnudCh[lpgliISTt_Cigug:gegagimtii Tnc;czﬁésmc;:l;e
of two identical neurons having noninstantaneous synapT '

Ic, .
transmission. echniques developed by Ermentrout and Kopell [4], [7] to
3) What Matters in Neural LockingLet us summarize

study parabolic bursting. The pulse-coupled canonical model
what we found so far. We study effect of excitation

that corresponds to periodic spiking of identical neurons (see
inhibition, and transmission delay on the dynamics of Iea@gl) can be written in the form (1)

1 | [l 1
1 LI LI 1
| 1 1 |
T T 1 T

|
1
Il
T

integrate-and-fire neurons. We confirm results of other authors ) n
(who used different methods) thateither of these factors ;= 1+e(l—cos2ma;) Y si;6(z;). (15)
alone contributes to the in-phase synchronization, but their j=1

combination doesFor example, the in-phase state is supet shape of the connection functign («;) = 1 —cos 2rz; is

stable for excitatory instantaneous connections, but becona%s icted in Fig. 16. Notice that it is continuous ang(0) = 0

unstable or disappears when transmission delay is introduc ; .
pp y which can be interpreted as follows: The neurons are not sensi-

provde i e el 1 o oporionl (0 1 pero. B o external mutswhn ey are 1  rocess o genertin
y phase sy . ) .__.@naction potential. Thus, sugh; takes into account absolute
connections are inhibitory, but introduction of a transmission . . . .
delay can make it stable and relative refractory periods. It is amazing that spghwas
y ' not “postulated,” “invented,” or “motivated by biology,” but
was obtained as a result of the Ermentrout—Kopell change of
variables applied to an arbitrary Class 1 excitable system.
An obvious modification of the integrate-and-fire neuron is System (15) can be transformed into the phase model (10).

an introduction of the absolute refractory period during which has the form

C. Leaky Integrate-and-Fire with Refractory Period

the cell is not sensitive to any input. This results in piece- n
wise constant functiory;; that is zero for allz; from some o/ =, +ZHU(% — i), Hij(x)=—2ms;;cosx (16)
neighborhood of:; = 0; see bottom of Fig. 9. One can modify =1

the integrate-and-fire neurons further and further to take into

account more and more biophysical information. This woulyhere

result in a pulse-coupled model that would be as complex and n

cumbersome as the Hodgkin—Huxley neurons. w; = 27 Z Sije
j=1

D. Class 1—Excitable Oscillators Notice that H;;, which is depicted in Fig. 16, can be rep-

Let us ask the following questiorfAre there any neural resented ad;;(x) = 2ns;; sin(—=n/2 + x). When (15) has
network models that are as simple as the integrate-and-fir@nsmission delays, then there is an induced phase shift added
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to —7 /2. In any case, the canonical model can be written in
the Kuramoto form [21] J

i=1

where we incorporatedr into s;; and —x/2 into ;.
Thus, the Kuramoto model is canonical for Class 1 excitable
oscillators having delayed interactions

Let us study the existence and stability of various syn-
chronized solutions in (16). Notice that eafh; is an even
function. As a result, a network of two identical oscillatorgig. 17. Each memorized image is represented as a limit cycle attractor in
can maintain an arbitrary phase shift becafige = H,; and the phase space of the model (from [14]).

"= H(x)=Hy(-x)—H =0
X %) 2(=x) 12(x) A. Integrate-and-Fire

1. ; : i i
for ?t" >t§t < 3 ! Sig Sse_ctlon IVQQ/. -(I)—h'i gg:ﬁe; W'Lh the It is easy to see that condition (18) cannot be satisfied for
resutt obtained in [ ] Since eadH;;(0) = ¥, e In-phase H;; corresponding to the integrate-and-fire networks consid-
synchronized solution cannot be exponentially stable. In fa

%tred above unless all;; = H,;; = 0. This does not imply
it is unstable whem > 2 (see [19]). Both results confirm and *J A - -
. " o .. . though, that h networks h trivial t t
extend numerical [10] and analytical [4] findings that difficult oug al SUCh NETWOTKS have Tivial assotiative properties

O ; ecause the convergence theorem provides only a sufficient
to synchronize is a natural property of Class 1 excitab

) . . . A ndition. Below we modify the integrate-and-fire network so
oscillators that is relatively independent from the equations . o can apply the convergence theorem and guarantee that

Rﬂggrate-and-fire—type networks have oscillatory associative

are quite different from the integrate-and-fire neurons. memory. Moreover, we show that there can be many such
As has been pointed out before [4], behavior of identic%odifica'tions '

Class 1 excitable oscillators is not generic in the sense that
small heterogeneity (different; and/ors;;) or synaptic trans-
mission delay (phase shift df;;) can change it significantly.
For example, in Section VII-D below we show that the Class Below we consider the following pulse-coupled network:
1 excitable oscillators can learn and reproduce the in-phase

B. Weakly Pulse-Coupled Oscillators

synchronized state (as well as any other temporal pattern) by Ti=14e¢ Zgij (@:)6(t — 7 — mij) (29)
modifying the transmission delays. j=1

where we takef; = 1 so that each oscillator has peridt= 1
VI. OSCILLATORY ASSOCIATIVE MEMORY: GENERAL THEORY  5n4 frequency2 = 2. We do not lose any generality, because

Hoppensteadt and Izhikevich [14, Th. 9.15] have proveme prove a lemma in the Appendix that shows that nonconstant
the following result, which is an analog of Cohen—Grossberfy could be transformed into constant ones by a continuous
convergence theorem for nonoscillatory neurons: change of variables.

Theorem 4—Convergence Theorem for Oscillatory NeuralTheorem 5—The Convergence Theorem For Weakly
Networks: Consider the phase model (10) and suppose thHawlse-Coupled OscillatorsConsider the weakly pulse-
wi = =w, =wand coupled network (19) and the corresponding phase model

1 (10). Let g(x) be an arbitrary odd function having period
Hij(=x) = —Hji(x), X€S (18) 1, see exesm)ples in Fig. 18. Lef), ¢, wy;, and w;; be
forall 4, =1, ---, n. Then the network dynamics convergearbitrary constants. If the connection functions have the form
to a limit cycle. On the limit cycle, all neurons oscillate 0
with equal frequencies and constant phase deviations. This 9is(@i) = gij + 9(wij + z:) (20)
corresponds to synchronization of the network activity. g5i(z;) :ggoi + g(wji + ;) (21)

Since there can be many such limit cycles, the phase mogﬂlj
(10) and hence the pulse-coupled network (1) can act as a
multiple attractor type neural network; see Fig. 17. Whether i +wij + 15 +wjs =0 (mod 1) (22)
or not this property renders any advantages over the classic%
Hopfield network (where attractors are just equilibria) is stiw]
an open question.

The convergence theorem can be illustrated using the KSR
ramoto model (17). The requirement (18) implies that

I

ere (mod 1) means modulo 1. Then the condition (18) in
e convergence theorem for oscillatory neural networks is
tisfied. If, in addition

dah=>ay (23)
j=1 j=1

for all ¢ andj. A learning rule that satisfies this requirementor all ¢ andk, then the activity of the pulse-coupled network
is discussed later. (19) converges to ar-neighborhood of a limit cycle. On the

Sij = Sji and 1/)“ = —1/)j7j
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g.. g..

S T S

X 1 O[/x 1

Fig. 19. Functions g;; corresponding to the pulse-coupled systems
(24)—(26), respectively.

S

(19) to have oscillatory associative memory. Thus, other pulse-
coupled networks that do not satisfy the assumptions of the
theorem should not be discarded immediately without an
additional analysis.

Fig. 18. Examples of odd functions having period 1 (see Theorem 5 for

details). VII. OSCILLATORY ASSOCIATIVE MEMORY: EXAMPLES

. ' , i A. Instantaneous Synaptic Transmission
limit cycle all neurons fire with equal frequencies and constant

phase differences, which corresponds to synchronization of thé-€t US consider the case when there are no transmission
network activity. delays; that is, when af};; = 0. We start from the following

Since there may be many such limit cycles, each for eafHestionAre there any simple pL_JIse-coupIed neyral networks
memorized image, the pulse-coupled network (19) can actthat are gua(anteed to have oscillatory associative memory?”
a multiple attractor neural network provided thais not very Be€loW is a list of some of them
large. The network can store and retrieve oscillatory images . ~
in essentially the same way the Hopfield network does with T =14 ew; Zsii‘s(xi) (24)
static images; see examples in Fig. 20. =t

Proof: From (8) it follows that

i; =1+¢e(xz; —0.5) Z Sij5(37j) (25)
2 4 —
h“(9) =47 gij | wiy + % -
T; =1 —esin 27wz, Z 5i50(x;) (26)

27mw;; + 6
:4ﬂ2{ggj+g<u)}, =
2

_ _ _ ) where we used;(t) instead oft—t} becauser;(t) = t+0(¢)
depicted in Fig. 19.

RY. = 2rg2.. .
* * Each model has its own advantages and drawbacks. For

From (7) it follows that example, the seemingly simplest functign, (z;) = s,
1 in (24) has a nonzero averag;éj = s;;/2. Therefore, the
Hi(x) = %hij(z/)ij —x) — Qﬁggj condition (233 has the form
—2rg 2mwiy + i = X > "si; = const (independent of) (27)
27 =
where);; = 2mn;; (mod 27) is the phase shift that is due toand can be interpreted as follows: All neurons in the network
the transmission delay;;. Obviously have equal amount of “postsynaptic sites.” The condition may

easily be violated during learning period unless a special

Hij(—x) =2ﬂg<w> learning rule is used.
2m System (25) is free from this drawback, but the function
_ 27rg<—27rww' — tij — X) (¢ is odd gij{(x;) = s;;(x; — 0.5) changes its sign. This may seem to
27 be biologically implausible if one interprets positivg; as
2wy + i — x “excitation” and negativey;; as “inhibition.” However, there
- 2W9<T> (22) is another interpretatioriNegativeg;; delays the next firing
= — Hji(x) of the ith neuron, while positivey;; advances it Whenever

¢;; changes signs implies that the effect of firing of tjta
which completes the proof of the first part of the theorem. neuron onto théth neuron depends on the relative timing of
Equation (23) implies that; = wy, for all ¢ and k. The rest their firing. If s;; > 0 in the system (25), and; just fired
follows from the phase model Theorem 1 and the convergen@e < 0.5), then a firing ofz; delays the next firing of;. In
Theorem 5. B contrast, ifx; is about to fire a spikex{ > 0.5), then firing
It should be stressed that the theorem above provides onfythe jth neuron advances this event. This occurs in many
the sufficient condition for the pulse-coupled neural netwotkiophysically detailed Hodgkin—Huxley-type models.
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Memorized Temporal Patterns

Memorized Temporal Patterns
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glx)=x-0.5

glx)=-sin2nx

Fig. 20. A pulse-coupled neural network (30) can memorize temporal patterns (in-phase, anti-phase, and out-of-phase synchronized solutifyingby mo
synaptic weightss;; and transmission delaysg;;. Parametersz = 1/20,» = 8,t € [0,30].

System (26) exhibits essentially the same behavior as (2f8); all : and j. Notice, that this condition is general and does

but the connection functiow;;(x;) = —s;; sin 2rx; is con-
tinuous andg;,;(0) = g;;(1) = 0. Such network does not

not depend on form of the odd functign
The requirement tha€' is self-adjoint arises naturally in

have nasty problems associated with discontinuities, suchvesakly connected networks near multiple Andronov—Hopf

nonunigueness of solutions; see Section IV-B. Moreover, béurcations [14]-[16], for which a learning rule is well known:
find (but cannot explain) that this model learns out-of-phaset the complex variable

temporal patterns better than (25) does; see Fig. 20.

B. Learning Rule

2 = e?ﬂimi

) ) ) denote the periodic activity of the#h neuron (the neuron fires
Let us discuss possible learning rules for the pulse-couplgfhen -, crosses the positive part of the real lifiz). The

networks for which the convergence theorem above is apRliarning rule [14], [16] has the following simple form:

cable. To be as general as possible, we consider the networks
in the following form:

Cij = Q%5 — YCij (29)

i=14e¢ Z si;9(wi; + 2;)6(z;) (28) Wherea and~ are some (small) positive parameters. The latter

j=1

has the meaning of the fading constant. Since we do not have

_ ) _ _ i any better idea, we take the learning rule (29) and apply it to
whereg(z) is an odd function having period “1.” Without losspulse-coupled oscillators (28).

of generality we assume that it change_s signs from “+"+3 “ Supposer; andz; fire incoherently. Then the produetz;
whenz passes; = 0; see examples in Fig. 19. We us¢ =0 a55umes many values randomly, and from the averaging it
so that the condition (23) is always satisfied regardless of thgiows that ¢i; — 0, which implies thatthe connections
values ofs;;. The convergence Theorem 5 requires that ‘

Wij = —Wj4 (mod 1) and

between incoherently firing neurons weaken
sij = Sji- Now suppose that; andzx; fire periodically with a constant

. ~ phase shift. For example; fires ¢;; units of time afterx;
It is convenient to introduce a complex synaptic coefficient goes: that is

C“ — Sz] 62771’ng .

Then, the requirement above means that the complex synaptic
matrix C' = (¢;;) is self-adjoint; i.e.,

Cij = Cji

az(t) = a:j(t — tij) (mod 1).

Due to the special form of (28), we have

a:j(t - tij) = a:j(t) — & + O(E) (mod 1)
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and hence When the delays are nonzero and fixed, the learning rule
may have the form
x;(t) — x;(t) = —t;; + O(e) (mod 1)
éij = Qj%iZ5 — VCij (31)
for all ¢£. From
where the complex-valued parameters

éij — ae—?ﬂltij — YCij = aC—Qwimj and = ac*QTfiT]ji
it follows that compensate for the delays. Such learning rule allows the
O _onit,, network to memorize the phase information in the same way it
Cij = ;6 does if there were no delays (as we describe in the Section VI).
It is also feasible to consider the case when the parameters
where we neglected the small tex@¥(e). We see that w;; andw;; are fixed, but the transmission delays and7;;
o can be modified due to the learning. Let
Si; — — and Wij — —tij (mod 1). .
v Cij = SZ‘J'G_QWWU

The former limit implies that the synaptic connectioy o the complex-valued synaptic coefficient (notice the minus
strengthens. Let us show that the latter limit implies that trgqgn) The learning rule has the form (31), but

neurons learn the phase shiff. That is, whenever; fires, ) )
z; tends to fire with the memorized time delay. Indeed, iy = e and  ay; = a0
supposew;; = —t;;, then there can be three cases.

* z; fires too early. This happens wheq(t) > z;(t —¢;;).
At the momentz, fires, z;(t) — t;; = x;(t) +wi; > 0,
henceg(x; +w;;) < 0, which causes a delay of the firing
of the ith neuron. i + 1 = 0(mod1).

o z; fires too late. Hencer;(t) < x;(t — t;;), hence
zi(t) + w;; < 0 and g(x; + w;;) > 0, which causes
an advance in the firing of thi&h neuron.

* The neurons fire with exact time differeng¢g. Then _
% There can be many other learning rules for the pulse-coupled

nes ;) = 0, and the difference is preserved. : . e
H g“h(a:i i ) o (29 . ? lation b network (30) so that it has an oscillatory associative memory.
us,the learning rule (29) memorizes not only correlation beg soomingly counterintuitive fact is that one can “teach”

tween the firings of the neurons, but also the phaseinformatiqﬂé network by modifying only the synaptic transmission
that is, the relative timing of their firings delaysn;; without modifying the synaptic efficacy;;. This

One_may qlaim that (29) is not biologically plgusible beémphasizes the importance of spike timing code as opposed
cause it requires the knowledge of the presynapiic membrq ean firing rate code and puts a new twist into the idea of

potential z; at all times. An obvious modification of (29)"‘3 fire” :
: L . - yn-fire” chains [2].
which uses only the timing of the presynaptic spiking, has the Example—Learning Temporal Pattern3p illustrate the

following form: idea of learning via modifying the synaptic connections and
the transmission delays, we consider the pulse-coupled system
(30) for g(x) = x — 0.5 and forg(z) = — sin 27z, This is the
Herec;; is incremented byve?*#: whenever thejth neuron same as to take the systems (25) and (26) with transmission
fires. Since such firings occur evety+ O(¢) units of time, delays. Each synchronized temporal pattern can be represented
we can rewrite the equation above in the following form: as a complex vector

compensate for the phase shift in For example, when
w;; = wy; = 0, the parametersy;; and «;; are real, and
the rule produces the delays satisfying

We interpret this as follows: It takes precisely one period (or a
multiple of a period) for a spike to travel from th¢h neuron
to theith neuron and back to thgh one.

C“ = 0462771117' (5(37]) — YCij-

new L ; — o 1
Cij = qe?™ e 1fyci}d o2riye
, = : ecCr
where the reset fromg;¢ to ¢ff™ occurs when; fires. .
6 TC1Y
C. Transmission Delays: Timing Is Everything and can be interpreted as follows: When neurgnfires a
Consider the pulse-coupled system (28) with nonzero trarsftike €1 = 1, therefpree%“ﬂ = 1), the second neuron
mission delay constants;; has membrane potentiab = y», etc. Obviously, the network
activity is synchronized (possibly out-of-phase) in this case.
. - Let &t .-, €™ be the set of temporal patterns to be memo-
z=1+e Z sijg(wij +2:)8(z;(t =) B0)  yiza4: seeillustration at the top of Fig. 20. We take the complex
=1 synaptic matrix in the formC”
The condition (22) implies that in order to have oscillatory m
associative memory, the transmission delaysandr;; must C= ng(gs)T

be in a certain relation with the parameters andw;;. s=1
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where T means transpose and complex-conjugate. Each dormer and the latter is just a matter of coordinate change,
efficient we study the phase model and deduce many interesting facts
m o about behavior of pulse-coupled networks.
cij = &E;
s=1

is easily computed, and the synaptic We'ghl_t = |cij| and Each variablep; in the phase model (6) has the meaning of

the delayn;; = Arg c;; can easily be determined. The latte iy of firing of theith neuron. Each functiog;; describes

is defined only whers;; 7 0. Notice the similarity with the ,,, iming of spiking of thejth neuron affects that of thigh

Hebbian rule, in which al7 are real and, hence, there is Qo on the time scale of orddrs. When the neurons have

_nee(_j for conjugation. We sef; = 0 for all ¢ in our simulations nonresonant frequencies, the corresponding funcln= 0

in Fig. 20. , . even whenz; and x; are connected in the original pulse-
Fro_m fche figure We can see that each key patebuilds coupled network (1). This means that such connections are

a periodic attractor in the phase space of the network. If t ctionally insignificant and do not affect dynamics of the

initial condition is chosen near the attractor, then the netwo urons. (They may contribute though to a slight increase or

converge t_o 't'_ Notice that the convergence t_akes Just a 1E%Vgcrease of the mean firing rate, since they affect the parameter
spikes, which is far below the theoretical limit ofe =20 )

spikes. We see that whether or not two weakly pulse-coupled neu-
rons interact depends not only on the existence of connections
between them, but also on the frequencies of their firing.
Let us apply the convergence theorem for pulse-coupléud analogy with FM radio, we say that connections between
networks to the canonical model for Class 1 excitable neurosisch neurons are frequency modulated (FM). In particular,
having delayed interactions. Such a model can be written\ire conclude that the mean firing rate (the frequency) of a

A. FM Interactions

D. Class 1 Excitable Oscillators

the form periodically spiking neuron does not carry any information
n other than identifying a channel of communication. The infor-
#; = 1+e(l — cos2ma;) Z 5i50(a i (t —mij)). (32) mation (neural code) is carried via modulations of interspike
j=1 intervals.
The functiong;;(x;) = s;;(1 — cos 27x;) can be represented o
in the form (20) when B. Synchronization
9% = sij, g(x) = s sin 27z, wij = —1/4. To stgdy the existence and stability of synchronized so-
lutions in the pulse-coupled model one should solve the
The condition (22) has the form algebraic equation (11) and apply the Ermentrout theorem.

—1/2 d1 This relatively easy procedure provides a powerful tool for
Mij + 15 = 1/2(mod 1) analysis of pulse-coupled networks. In particular, it allows

and has an obvious interpretation: It takes half a cycle (plté§ to confirm and extend results of others (see Section V)
a multiple of the period) for a spike to travel from then regarding the locking dynamics of integrate-and-fire neurons:
neuron to theith one and back to thgth. If, in addition, Neither the sign of synaptic connections (i.e., excitation or
si; = s, for all i andy, and (27) holds, then the pulse-coupledhibition), nor the synaptic transmission delays alone con-
canonical model has an oscillatory associative memory. Agaffibute to synchronization, but their combination does. We
one can “teach” the strength of synaptic connectignsnd/or also fjnd Fhat behavior of integr.ate—and-fire neurons may
the synaptic transmission delays; to memorize oscillatory P& quite different from the behavior of other pulse-coupled
images. networks.
We stress that whether or not the pulse-coupled network
(32) has any advantage over the classical Hopfield netwark Oscillatory Associative Memory
is still an open question. This is especially frustrating after
we take into account that (32) is a canonical model dbir . .
weakly coupled Class 1 excitable oscillators regardless of tnéo the theory O.f pulse-coupled networ!<s Is the convergence
; ; . eorem for oscillatory neural networks; see Section VI. The
equations that describe dynamics of each cell [19]. ; o . .
theorem provides a criterion for checking the existence of
oscillatory associative memory in pulse-coupled networks.
Moreover, it provides an algorithm for invention of pulse-
The major purpose of this paper is to explore the linkoupled networks that are guaranteed to have associative
between the theory of pulse-coupled neural networks aptbperties. Such pulse-coupled networks can memorize and
the theory of weakly connected oscillators. Our major tooéproduce temporal patterns in the same way a standard
is Theorem 1 according to which all weakly pulse-coupledopfield network does with stationary patterns. Learning in
oscillatory networks of the form (1) can be converted intsuch pulse-coupled networks may consist in modifying not
a phase model of the form (6) by a piece-wise continuoasly the weights of synaptic connections, but also the duration
change of variables. Since the only difference between tbesynaptic transmission delays.

One of the most important contributions of phase models

VIIl. DISCUSSION
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D. Limitations Even though the difference between (1) and (33) is a matter

Our results are exact when the strength of synaptic conn@f coordinate change, the latter may have certain advantages: It
tions is not very large; that is, when< o, whereso > 0 is has fewer nonlinear terms. Hence, it may be easier to analyze

some parameter that depends on the details of the network2fif/or simulate.

particular, almost all illustrations in this paper were made for ) _ o

e = 1/20. To which extent the results are valid for largis an A Possible Discontinuity of;

open question. We hope however that they can still provide anEach functionh;;(#) may be discontinuous &= 0 when
adequate intuition into the behavior of strongly pulse-coupleti(0) # f;(1) or g;;(0) # ¢;;(1). Such a discontinuity, which

neural networks. affects behavior of the system only when two or more neurons
fire simultaneously, reflects the ambiguity of the pulse-coupled
APPENDIX | system (1) when neurons fire simultaneously.
PROOF OF THEPHASE MODEL THEOREM FOR Let us illustrate this issue whep;;(0) # g;;(1) and
WEAKLY PULSE-COUPLED OSCILLATORS z; and z; fire simultaneously. In practice they never fire

. : simultaneously, so we have ~ z; at the moment of firing.
Let us prove the following general lemma, which can bg . . . .
upposex; fires first. Whether it advances or delays is

interpr follows: Any “leaky” pulse- I illator ) )
terpreted as follows y leaxy p:’ s€ coup”ed oscilato ¥rrelevant, because the spike from tft neuron arrives when
network can be transformed into “nonleaky” form by an

appropriate continuous change of variables. z; has already crossed = 1. The increment ofs; is
Lemma 6: There is a continuous change of variables that £9i;(0) + O(£?) (36)

transforms (1) into . _ . . i
in this case. In contrast, if; fires first, it incrementsy;

by eg;;(1) + O(e?), which is different from (36). Therefore,
it is not clear what value we should use if thelp fire
simultaneously. The apparent contradiction is reflected in
where eachh;; is the phase resetting curve defined belodiscontinuities of;; and H;; in Theorem 1.
(35). Firing a spike corresponds #p crossing2z = 0. At this
moment it increment¥; by shij(ei)Qj*l. B. Phase Deviation Variables
The fact_orQT1 is due to the fact tha#,(t) behaves like | ot ys represent eadh in the form
;¢ when it crosses), and

= ke (056, — ) £ O (39

i=1

0:(t) = Qit + ¢ 37

1 1
/6(9j(t))dt:/6(gjt)dt: Q_j/é(s) ds = Q; where ¢; € S! is the phase deviation from the natural
_ ~oscillation ©;t. It accounts for modulations of the interspike
Proof: Let X;(t), ¢ € [0, T;], be a solution of (3) starting jntervals that are due to the weak inputs from the other

from X;(0) = 0. We represent it in the form neurons. To determine the phake and hence the voltage
Xi(t) = Xi(Q5710;(1)). (34) of the ith_neuron, it suff_icgs to dete_rmine its phas_e deviat_ion
¢;. Knowing phase deviations provides complete information
Since about behavior of the network.

We rewrite the phase model (33) in terms of phase devia-
tions ¢;. For this we substitute (37) into (33) to obtain

the firing of the:th neuron occurs wheé; = 2x. . n )
When neurons do not fire (ie., when all # 1), we @i =&Y hi;(Qut+¢:)8(Q;(t =)+ ¢;(t — 1)) + O(e?).

1= X,(T;) = X, (7 2n)

differentiate both sides of (34) with respect tand divide j=1
by f; > 0 to obtain Averaging theory [14, Sec. 9.3] provides a nearly identical
. — Q. change of variables (valid for a#l less than certaiag > 0)

i = @i + O 38
When thejth neuron firesx; = 1, and X; is incremented ¢ = it Ole) (38)
by £g;;(X;). At this momentd; crosses2r = 0. Since it that transforms this system into the form
behaves like2;t + O(e), it increments the phase variale n
by sQ{lhij(ei). The functionh;; can be determined from b= ZEU(%, @)+ 0(e) (39)
,'=1
X; + egiy =X (65 + e s + O(e?))) J _
, . . .
=X, (X () Thy i 4 O(),. where’ = d/dr, 7 = et is the slow time, anch;;(y;, ¢;) is
e fil Xo) (k)i + O(7) the “average” of the ternk;;§ given by
This leads to LT
(x.(OT LY, lim —/ Py (it 6 (2 (E—nij )+, (t—m,;)) dt. (40)
hij(6:) = 9, Gij ())((Z(gil;Z)) 35) T— T /o J J J ) J
FilXi($476:) It depends not only on the form &f;, but also on the resonant
which completes the proof of the lemma. m relations between the frequencifs and (2;.
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C. Equal Frequencies Let us check that the sum is2ar/g-periodic function ofy;.
Let us consider the simplest case whep = Q; = Q For this notice thatp and ¢ are relatively prime, therefore,
=Q =

for some2o. (The case; ~ ; is considered in Section I-F the set
below.) LetT, = 27/ be the period of oscillation. Then

2 2
(40) converges to the integral {O, % (mod 2x),---, (¢ — 1)% (mod 27r)}
_ 1 [T
hij =1/, hij (S0t + ©:)6(Qo(t — 1mi5) + @;) di is a permutation of the set
1 27
_ - - ) . 2 2 2
_g hz](3+9077w +¢z_¢j)6(8)d8 {0’ ?7(’2?7(’ T (q_l)?ﬂ}.

1
= —hi;(Qoni; + 0i — ¢; .
g a0ty + 01 = 03) Hence, the sum can be rearranged in the form

wherey; = ¢;(t —mn:;), and we do not change the integration
limits becauser;; is 2w-periodic. Thus, the system (39) can 1 Ky p p
) P y ( ) Zhu<_k/+ —Tij +<Pz_q<)0’> :Q<¢i_a¢j>

be written in the form 27rq
" k=0
e E s s PR— . — .. 2 . . . B
o Zh” (Y5 + i = @it = nig)) + O(€7) where @ is some 2r/g-periodic function. LetP;;(y) =
j=1

Q(y/q), then P,; is 2r-periodic, and (41) holds.
where;; = Qqn;; is the rescaled transmission delay. Let If we treat P;; (or Q) as the rectangular method approxi-

7 = et be the slow time. Then mation to the integral of.;; with the integration steg@r /g,
then we can conclude that
@i(e(t —nij)) = @i(T — enij) = @;(7) + O(¢)
and we rewrite the system above in the form hi; = Py = h; + O(q) (42)
Z ii(Yij + 0i(T) — @;(7)) + O(e). that is, I; approaches a constant when the order of the

- resonance increases.

Here we implicitly assumed that the delay constamis,are of
the same order of magnitude as the peridgdn this case the E. Nonresonant Frequencies
delay affects onlythe small termO(e) in the equation above.

This seems to be a universal principle in the theory of weakly
connected oscillators [5], [14]. In contrast, if the delay is long
enough and comparable wittye periods, then the averaged

equation above does acquire an explicit time delay [17].

We say that the frequenciés; and{2; arenonresonantf
psY; #

for any nonzero integers andq. In this case the integral (40)

. nver h nstan
D. Resonant Frequencies converges to the constant

We say that the frequencié; and(2; are resonantif o 1 /2” his(s) ds
vy 2 v .
ij = qu (27?) 0

for some relatively prime integegsandg. One can prove an The proof follows from the ergodic theory and is provided
analog of [14, Th. 9.6 or 9.12] to show that the average elsewhere. Intuitively, it also follows from (42) when— oc.

can be represented in the form Finally, we can write the averaged phase model in the form
_ (6), where
hij(is i) = Pij(pe; — ap:) (41)
T 0
for some 27-periodic function F;;, which approaches the Hij (i, 05) = hij(9ir 05) = hy;
constanth0 defined below when the order of the resonance
lp + q| mcreases is a connection function having zero mean value, and
Indeed, sincel; = ¢}, (40) converges to the integral n
0
_ 1 qT; w; = Z h“
hij = — hig (Qit + 0i)6(Q5(t — i) + ;) dit i=1
a1 Jo
1 [P p P p From (34), (37), and (38) it follows that
= 2ra /s hij <—3+—7771j+%— —pj J6(s)ds (34). (37, (38)

zi(t) = Xt + Qg pilet)) + Oe).

1
2 E h7j< 271'I€+ 777J+S07_p§0>
T 4 We depicted typicak;(t) and X; (t 4 Q5 @i (et)) in Fig. 1.
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that all
Q=Q+ 6/31

whereg; are frequency deviations. Thus, we consider a weakly
heterogeneous network. Applying transformations (37) and
(38) as if all 3; were zeros, we get

(1]

[2]
This system can be written in the form (6) if we incorporate[3]
5; into w;.

1 n
r_ . E A s pr
; = w; + 3 + o sz(‘sz(P]) + O(E)

i=1

[4]
APPENDIX I 5]

GENERALIZATION: TEMPORAL SYNAPTIC TRANSMISSION

The phase model theorem 1 can easily be extended {6l
pulse-coupled networks having nontrivial temporal synaptic
transmission. Below we summarize the theory for nearlyz
identical neurons. Our exposition is based on [34].

If neurons experience firings of other neurons as brige
increments or decrements of their membrane potentials, then
we can use Dirac delta functions and write the pulse-coupled
system in the form (1). In contrast, when the postsynapti
effect is extended in time (e.g., it has slow rise), then theo)
pulse-coupled network should be written in the form

i = fl@:) +e) g (@) Bt — 1))
j=1

[11]

43

(43) 121
wheret* denotes the time of last spiking of thih neuron,

and E;(t) is some function that describes the temporal effelt’
of synaptic transmission. For examplg; can be the alpha

function (14]
Ej(s) =a’se™, a>0, s=t—1t;>0 (15]
describing the postsynaptic conductance. Corresponging [16]

has the form
9ij (%) = Toyn — ; [17]

where z,,, € IR is some constant. It is commonly assumegg)
that £;(s) = 0 when s is greater than the period of the
jth oscillator, which means that the secretion of synapt[g:g]
transmitter due to the incoming spike is much greater than
that due to the previous spikes. (20]

In general, eachr; is a vector describing the membrang,;
potential, ion conductances, and other electro-physiological
characteristics of neurons. In this case one should use @
Malkin theorem [14, Th. 9.2] to convert (43) into the phasgag;
model (10).

When all z; are scalars, and the neurons have near@/l]
identical frequencies$); = Q; = o, then the phase model
theorem 1 can be proved [34], but the functidns(#) defined [25]
in (8) have the following form 26]
T i (X)) 1
C LOG0) E,t+Q50)dt

whereTy = 27 /€ is the common period.

hij(6) = QF [27]
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